Bankruptcy prediction using ensemble SVM model
نویسندگان
چکیده
منابع مشابه
Bankruptcy Prediction using SVM and Hybrid SVM Survey
Bankruptcy prediction has been a topic of active research for business and corporate organizations since past decades. It is an effective tool to help financial institutions and relevant people to make the right decision in investments, especially in the current competitive environment. The tool provides auditors and managers a chance to identify the problems early.
متن کاملEnsemble KNNs for Bankruptcy Prediction
The business failure has been widely researched, trying to identify the various determinants that can affect the existence of firms. However, the variety of models as well as the variety of the theoretical frameworks, illustrates the lack of consensus on how to understand the phenomenon and the difficulties in formulating a general model interpretation. One hotspot nowadays is the prediction of...
متن کاملEnsemble with neural networks for bankruptcy prediction
0957-4174/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.eswa.2009.10.012 * Corresponding author. Tel.: +82 51 32
متن کاملVariable Selection Method Affects SVM Approach in Bankruptcy Prediction
This paper examined bankruptcy predictive accuracy of five statistics models-discriminant analysis logistic regression, probit regression, neural networks, support vector machine (SVM), and genetic-based SVM (GA-SVM) that influenced by variable selection. Empirical results indicate that the SVM-based models are very promising models for predicting financial failure, in terms of both best predic...
متن کاملBankruptcy Prediction Using Feature Projection
Bankruptcy prediction has been an important decision-making process for nancial analysts. One of the most common approaches for the bankruptcy prediction problem is the Discrim-inant Analysis. Also, the k-Nearest Neighbor classiier is very successful in such domains. This paper proposes a Feature Projection based classiication algorithm, and explores its applicability to the problem of predicti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Data and Information Science Society
سال: 2013
ISSN: 1598-9402
DOI: 10.7465/jkdi.2013.24.6.1113